Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Pharmacol Rev ; 76(2): 251-266, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38351072

RESUMEN

Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made.


Asunto(s)
Pruebas de Toxicidad , Animales , Humanos , Pruebas de Toxicidad/métodos , Modelos Animales
2.
Annu Rev Pharmacol Toxicol ; 64: 191-209, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37506331

RESUMEN

Traditionally, chemical toxicity is determined by in vivo animal studies, which are low throughput, expensive, and sometimes fail to predict compound toxicity in humans. Due to the increasing number of chemicals in use and the high rate of drug candidate failure due to toxicity, it is imperative to develop in vitro, high-throughput screening methods to determine toxicity. The Tox21 program, a unique research consortium of federal public health agencies, was established to address and identify toxicity concerns in a high-throughput, concentration-responsive manner using a battery of in vitro assays. In this article, we review the advancements in high-throughput robotic screening methodology and informatics processes to enable the generation of toxicological data, and their impact on the field; further, we discuss the future of assessing environmental toxicity utilizing efficient and scalable methods that better represent the corresponding biological and toxicodynamic processes in humans.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento , Toxicología , Animales , Humanos , Ensayos Analíticos de Alto Rendimiento/métodos , Toxicología/métodos
3.
Regul Toxicol Pharmacol ; 145: 105523, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37956767

RESUMEN

As part of the US FDA CFSAN's efforts to explore alternatives to animal testing, we retrospectively analyzed a sample of food additive (FAP) and color additive petitions (CAP) submitted to the FDA for the utility of dog study data in safety assessment. FAPs and CAPs containing dog studies (161 petitions) were classified as decisive (38%), supportive (27%), supplemental (29%) or undermined (6%) based on the impact the dog study data had on the final safety decision. Petitions classified as decisive were further categorized based on if the dog study data were used to a) address a safety concern (35/61); b) calculate an acceptable daily intake (ADI) (11/61); c) withdraw a petition (4/61); d) the effect was unique to the dog (2/61); or e) unclear (9/61). Of 11 petitions where the dog study was used to set an ADI, 7 contained studies where the points of departure (POD) from the dog studies were within an 8-fold range of the rodent with differences in study design likely contributing to the difference in PODs. Future research should include the development and use of qualified alternative studies to replace the use of animal testing for food and color additive safety assessment while ensuring human safety.


Asunto(s)
Aditivos Alimentarios , Alimentos , Perros , Animales , Humanos , Estudios Retrospectivos , Aditivos Alimentarios/toxicidad , Nivel sin Efectos Adversos Observados
4.
Regul Toxicol Pharmacol ; 144: 105487, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37640100

RESUMEN

The U.S. Food and Drug Administration (FDA) developed an oral toxicological reference value (TRV) for characterizing potential health concerns from dietary exposure to cadmium (Cd). The development of the TRV leveraged the FDA's previously published research including (1) a systematic review for adverse health effects associated with oral Cd exposure and (2) a human physiological based pharmacokinetic (PBPK) model adapted from Kjellstrom and Nordberg (1978) for use in reverse dosimetry applied to the U.S. population. Adverse effects of Cd on the bone and kidney are associated with similar points of departure (PODs) of approximately 0.50 µg Cd/g creatinine for females aged 50-60 based on available epidemiologic data. We also used the upper bound estimate of the renal cortical concentration (50 µg/g Cd) occurring in the U.S. population at 50 years of age as a POD. Based on the output from our reverse dosimetry PBPK Model, a range of 0.21-0.36 µg/kg bw/day was developed for the TRV. The animal data used for the animal TRV derivation (0.63-1.8 µg/kg bw/day) confirms biological plausibility for both the bone and kidney endpoints.


Asunto(s)
Cadmio , Exposición a Riesgos Ambientales , Femenino , Animales , Humanos , Persona de Mediana Edad , Cadmio/toxicidad , Exposición a Riesgos Ambientales/efectos adversos , Valores de Referencia , Alimentos , Riñón
5.
J Appl Toxicol ; 43(12): 1872-1882, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37501093

RESUMEN

Our previous study showed that sodium arsenite (200 mg/L) affected the nervous system and induced motor neuron development via the Sonic hedgehog pathway in zebrafish larvae. To gain more insight into the effects of arsenite on other signaling pathways, including apoptosis, we have performed quantitative polymerase chain reaction array-based gene expression analyses. The 96-well array plates contained primers for 84 genes representing 10 signaling pathways that regulate several biological functions, including apoptosis. We exposed eggs at 5 h postfertilization until the 72 h postfertilization larval stage to 200 mg/L sodium arsenite. In the Janus kinase/signal transducers and activators of transcription, nuclear factor κ-light-chain-enhancer of activated B cells, and Wingless/Int-1 signaling pathways, the expression of only one gene in each pathway was significantly altered. The expression of multiple genes was altered in the p53 and oxidative stress pathways. Sodium arsenite induced excessive apoptosis in the larvae. This compelled us to analyze specific genes in the p53 pathway, including cdkn1a, gadd45aa, and gadd45ba. Our data suggest that the p53 pathway is likely responsible for sodium arsenite-induced apoptosis. In addition, sodium arsenite significantly reduced global DNA methylation in the zebrafish larvae, which may indicate that epigenetic factors could be dysregulated after arsenic exposure. Together, these data elucidate potential mechanisms of arsenic toxicity that could improve understanding of arsenic's effects on human health.


Asunto(s)
Arsénico , Arsenitos , Animales , Humanos , Pez Cebra/genética , Arsénico/toxicidad , Proteína p53 Supresora de Tumor , Proteínas Hedgehog/farmacología , Arsenitos/toxicidad , Perfilación de la Expresión Génica , Apoptosis
6.
Toxicol In Vitro ; 91: 105630, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37315744

RESUMEN

Skin permeation is a primary consideration in the safety assessment of cosmetic ingredients, topical drugs, and human users handling veterinary medicinal products. While excised human skin (EHS) remains the 'gold standard' for in vitro permeation testing (IVPT) studies, unreliable supply and high cost motivate the search for alternative skin barrier models. In this study, a standardized dermal absorption testing protocol was developed to evaluate the suitability of alternative skin barrier models to predict skin absorption in humans. Under this protocol, side-by-side assessments of a commercially available reconstructed human epidermis (RhE) model (EpiDerm-200-X, MatTek), a synthetic barrier membrane (Strat-M, Sigma-Aldrich), and EHS were performed. The skin barrier models were mounted on Franz diffusion cells and the permeation of caffeine, salicylic acid, and testosterone was quantified. Transepidermal water loss (TEWL) and histology of the biological models were also compared. EpiDerm-200-X exhibited native human epidermis-like morphology, including a characteristic stratum corneum, but had an elevated TEWL as compared to EHS. The mean 6 h cumulative permeation of a finite dose (6 nmol/cm2) of caffeine and testosterone was highest in EpiDerm-200-X, followed by EHS and Strat-M. Salicylic acid permeated most in EHS, followed by EpiDerm-200-X and Strat-M. Overall, evaluating novel alternative skin barrier models in the manner outlined herein has the potential to reduce the time from basic science discovery to regulatory impact.


Asunto(s)
Cafeína , Absorción Cutánea , Humanos , Piel/metabolismo , Epidermis/metabolismo , Ácido Salicílico/metabolismo , Testosterona/metabolismo , Agua/metabolismo
7.
Campbell Syst Rev ; 19(1): e1305, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36911861

RESUMEN

This is the protocol for a Campbell systematic review. The objectives are as follows. The proposed evidence and gap map will present relevant process evaluations and other studies of barriers and facilitators, both qualitative and quantitative, for eligible homelessness interventions to highlight the issues arising in the implementation of these interventions. Specifically, the objectives of the map are to: (i) develop a clear taxonomy of interventions and implementation issues (e.g., barriers and facilitators-factors which works as barriers to hinder successful implementation of policies and programmes and factors which facilitate the intervention and therefore support its implementation) related to homelessness in high-income countries; (ii) map available systematic reviews and primary studies of the implementation issues of interventions for those experiencing homelessness and those at risk of homelessness, with an overview provided in a summary report; (iii) provide a searchable database of included studies accessible to research users via CHI website.

8.
Neurosci Lett ; 795: 137042, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36587726

RESUMEN

The mechanism of inorganic arsenic-induced neurotoxicity at the cellular level is not known. In zebrafish, teratological effects of inorganic arsenic have been shown at various concentrations. Here, we used similar concentrations of inorganic arsenic to evaluate the effects on specific neuron types. Exposure of zebrafish embryos at 5 h post fertilization (hpf) to sodium arsenite induced developmental toxicity (reduced body length) in 72 hpf larvae, beginning at a concentration of 300 mg/L concentration. Mortality or overt morphological deformity was detected at 500 mg/L sodium arsenite. While 200 mg/L sodium arsenite induced development of tyrosine hydroxylase-positive (dopaminergic) neurons, there was no significant effect on the development of 5-hydroxytryptamine (serotonergic) neurons. Sodium arsenite reduced acetylcholinesterase activity. In the hb9-GFP transgenic larvae, both 200 and 400 mg/L sodium arsenite produced supernumerary motor neurons in the spinal cord. Inhibition of the Sonic hedgehog (Shh) pathway that is essential for motor neuron development, by Gant61, prevented sodium arsenite-induced supernumerary motor neuron development. Inductively coupled plasma mass spectrometry (ICP-MS) revealed that with 200 mg/L and 400 mg/L sodium arsenite treatment, each larva had an average of 387.8 pg and 847.5 pg arsenic, respectively. The data show for the first time that inorganic arsenic alters the development of dopaminergic and motor neurons in the zebrafish larvae and the latter occurs through the Shh pathway. These results may help understand why arsenic-exposed populations suffer from psychiatric disorders and motor neuron disease and Shh may, potentially, serve as a plasma biomarker of arsenic toxicity.


Asunto(s)
Arsénico , Pez Cebra , Animales , Pez Cebra/fisiología , Proteínas Hedgehog , Neuronas Dopaminérgicas , Acetilcolinesterasa , Neuronas Motoras
9.
Environ Int ; 171: 107701, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36542998

RESUMEN

BACKGROUND: Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS: BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS: 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION: The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.


Asunto(s)
Agua Potable , Compuestos Orgánicos Volátiles , Contaminantes Químicos del Agua , Humanos , Estados Unidos , Abastecimiento de Agua , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Químicos del Agua/análisis
10.
Front Pharmacol ; 13: 1018226, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36238576

RESUMEN

Reproductive toxicity is one of the prominent endpoints in the risk assessment of environmental and industrial chemicals. Due to the complexity of the reproductive system, traditional reproductive toxicity testing in animals, especially guideline multigeneration reproductive toxicity studies, take a long time and are expensive. Therefore, machine learning, as a promising alternative approach, should be considered when evaluating the reproductive toxicity of chemicals. We curated rat multigeneration reproductive toxicity testing data of 275 chemicals from ToxRefDB (Toxicity Reference Database) and developed predictive models using seven machine learning algorithms (decision tree, decision forest, random forest, k-nearest neighbors, support vector machine, linear discriminant analysis, and logistic regression). A consensus model was built based on the seven individual models. An external validation set was curated from the COSMOS database and the literature. The performances of individual and consensus models were evaluated using 500 iterations of 5-fold cross-validations and the external validation data set. The balanced accuracy of the models ranged from 58% to 65% in the 5-fold cross-validations and 45%-61% in the external validations. Prediction confidence analysis was conducted to provide additional information for more appropriate applications of the developed models. The impact of our findings is in increasing confidence in machine learning models. We demonstrate the importance of using consensus models for harnessing the benefits of multiple machine learning models (i.e., using redundant systems to check validity of outcomes). While we continue to build upon the models to better characterize weak toxicants, there is current utility in saving resources by being able to screen out strong reproductive toxicants before investing in vivo testing. The modeling approach (machine learning models) is offered for assessing the rat multigeneration reproductive toxicity of chemicals. Our results suggest that machine learning may be a promising alternative approach to evaluate the potential reproductive toxicity of chemicals.

12.
Neurotoxicol Teratol ; 90: 107059, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34979254

RESUMEN

Exposure to relatively high levels of inorganic arsenic (iAs) is associated with detrimental effects on human health, including cancer and diabetes. The effects of lower-level exposures are less clear, and gaps in the literature exist as to the effects of iAs exposure on neurodevelopment. The current study assessed the effects of perinatal iAs exposure on rodent neurodevelopment and behavior. Pregnant Sprague-Dawley (SD) rats were exposed to arsenite (AsIII) via oral gavage on gestational days (GD) 6 through 21, and pups were directly dosed via gavage on postnatal days (PND) 1 through 21. Dams and offspring received the same doses: 0.00, 0.10, 1.50, or 3.75 mg/kg/day. Male and female offspring underwent a battery of behavioral assessments from weaning until PND 180. Brain arsenic levels increased in a dose-dependent manner at both PND 1 and 21. Results from the behavioral tests show that pre- and postnatal AsIII exposure did not adversely affect offspring weight gain, adolescent motor and cognitive functions, or adult motor and cognitive functions in the SD rat. There were no differences in concentration of several brain proteins associated with blood-brain barrier permeability, dopamine functions, and inflammation.


Asunto(s)
Arsénico , Arsenitos , Efectos Tardíos de la Exposición Prenatal , Animales , Arsenitos/metabolismo , Arsenitos/toxicidad , Conducta Animal , Encéfalo , Femenino , Humanos , Masculino , Embarazo , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Sprague-Dawley
13.
ALTEX ; 39(2): 297­314, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35064273

RESUMEN

Complex in vitro models (CIVM) offer the potential to improve pharmaceutical clinical drug attrition due to safety and/ or efficacy concerns. For this technology to have an impact, the establishment of robust characterization and qualifi­cation plans constructed around specific contexts of use (COU) is required. This article covers the output from a workshop between the Food and Drug Administration (FDA) and Innovation and Quality Microphysiological Systems (IQ MPS) Affiliate. The intent of the workshop was to understand how CIVM technologies are currently being applied by pharma­ceutical companies during drug development and are being tested at the FDA through various case studies in order to identify hurdles (real or perceived) to the adoption of microphysiological systems (MPS) technologies, and to address evaluation/qualification pathways for these technologies. Output from the workshop includes the alignment on a working definition of MPS, a detailed description of the eleven CIVM case studies presented at the workshop, in-depth analysis, and key take aways from breakout sessions on ADME (absorption, distribution, metabolism, and excretion), pharmacology, and safety that covered topics such as qualification and performance criteria, species differences and concordance, and how industry can overcome barriers to regulatory submission of CIVM data. In conclusion, IQ MPS Affiliate and FDA scientists were able to build a general consensus on the need for animal CIVMs for preclinical species to better determine species concordance. Furthermore, there was acceptance that CIVM technologies for use in ADME, pharmacology and safety assessment will require qualification, which will vary depending on the specific COU.


Asunto(s)
Alternativas a las Pruebas en Animales , Dispositivos Laboratorio en un Chip , Animales , Evaluación Preclínica de Medicamentos , Industria Farmacéutica , Preparaciones Farmacéuticas/metabolismo , Estados Unidos , United States Food and Drug Administration
14.
Exp Biol Med (Maywood) ; 247(1): 1-75, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34783606

RESUMEN

There is an evolution and increasing need for the utilization of emerging cellular, molecular and in silico technologies and novel approaches for safety assessment of food, drugs, and personal care products. Convergence of these emerging technologies is also enabling rapid advances and approaches that may impact regulatory decisions and approvals. Although the development of emerging technologies may allow rapid advances in regulatory decision making, there is concern that these new technologies have not been thoroughly evaluated to determine if they are ready for regulatory application, singularly or in combinations. The magnitude of these combined technical advances may outpace the ability to assess fit for purpose and to allow routine application of these new methods for regulatory purposes. There is a need to develop strategies to evaluate the new technologies to determine which ones are ready for regulatory use. The opportunity to apply these potentially faster, more accurate, and cost-effective approaches remains an important goal to facilitate their incorporation into regulatory use. However, without a clear strategy to evaluate emerging technologies rapidly and appropriately, the value of these efforts may go unrecognized or may take longer. It is important for the regulatory science field to keep up with the research in these technically advanced areas and to understand the science behind these new approaches. The regulatory field must understand the critical quality attributes of these novel approaches and learn from each other's experience so that workforces can be trained to prepare for emerging global regulatory challenges. Moreover, it is essential that the regulatory community must work with the technology developers to harness collective capabilities towards developing a strategy for evaluation of these new and novel assessment tools.


Asunto(s)
Investigación Biomédica , Simulación por Computador , Humanos
15.
Toxicol Sci ; 186(1): 12-17, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-34755872

RESUMEN

New approach methodologies (NAMs), including in vitro toxicology methods such as human cells from simple cell cultures to 3D and organ-on-a-chip models of human lung, intestine, liver, and other organs, are challenging the traditional "norm" of current regulatory risk assessments. Uncertainty Factors continue to be used by regulatory agencies to account for perceived deficits in toxicology data. With the expanded use of human cell NAMs, the question "Are uncertainty factors needed when human cells are used?" becomes a key topic in the development of 21st-century regulatory risk assessment. M.D., PhD, the coauthor of an article detailing uncertainty factors within the U.S. EPA, and L.E., PhD., Executive Vice President, Science, Emulate, who is involved in developing organ-on-a-chip models, debated the topic. One important outcome of the debate was that in the case of in vitro human cells on a chip, the interspecies (animal to human) uncertainty factor of 10 could be eliminated. However, in the case of the intraspecies (average human to sensitive human), the uncertainty factor of 10, additional toxicokinetic and/or toxicodynamic data or related information will be needed to reduce much less eliminate this factor. In the case of other currently used uncertainty factors, such as lowest observable adverse effect level to no-observed adverse effect level extrapolation, missing important toxicity studies, and acute/subchronic to chronic exposure extrapolation, additional data might be needed even when using in vitro human cells. Collaboration between traditional risk assessors with decades of experience with in vivo data and risk assessors working with modern technologies like organ chips is needed to find a way forward.


Asunto(s)
Incertidumbre , Predicción , Humanos , Técnicas In Vitro , Nivel sin Efectos Adversos Observados , Medición de Riesgo/métodos
16.
Clin Transl Sci ; 14(5): 1659-1680, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33982436

RESUMEN

Nonclinical testing has served as a foundation for evaluating potential risks and effectiveness of investigational new drugs in humans. However, the current two-dimensional (2D) in vitro cell culture systems cannot accurately depict and simulate the rich environment and complex processes observed in vivo, whereas animal studies present significant drawbacks with inherited species-specific differences and low throughput for increased demands. To improve the nonclinical prediction of drug safety and efficacy, researchers continue to develop novel models to evaluate and promote the use of improved cell- and organ-based assays for more accurate representation of human susceptibility to drug response. Among others, the three-dimensional (3D) cell culture models present physiologically relevant cellular microenvironment and offer great promise for assessing drug disposition and pharmacokinetics (PKs) that influence drug safety and efficacy from an early stage of drug development. Currently, there are numerous different types of 3D culture systems, from simple spheroids to more complicated organoids and organs-on-chips, and from single-cell type static 3D models to cell co-culture 3D models equipped with microfluidic flow control as well as hybrid 3D systems that combine 2D culture with biomedical microelectromechanical systems. This article reviews the current application and challenges of 3D culture systems in drug PKs, safety, and efficacy assessment, and provides a focused discussion and regulatory perspectives on the liver-, intestine-, kidney-, and neuron-based 3D cellular models.


Asunto(s)
Alternativas al Uso de Animales/métodos , Técnicas de Cultivo Tridimensional de Células , Evaluación Preclínica de Medicamentos/métodos , Alternativas al Uso de Animales/normas , Células Cultivadas , Técnicas de Cocultivo , Evaluación Preclínica de Medicamentos/normas , Humanos , Intestinos/citología , Riñón/citología , Hígado/citología , Neuronas , Esferoides Celulares , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas , Estados Unidos , United States Food and Drug Administration/normas
17.
Toxicol Sci ; 180(2): 198-211, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33555348

RESUMEN

FutureTox IV, a Society of Toxicology Contemporary Concepts in Toxicology workshop, was held in November 2018. Building upon FutureTox I, II, and III, this conference focused on the latest science and technology for in vitro profiling and in silico modeling as it relates to predictive developmental and reproductive toxicity (DART). Publicly available high-throughput screening data sets are now available for broad in vitro profiling of bioactivities across large inventories of chemicals. Coupling this vast amount of mechanistic data with a deeper understanding of molecular embryology and post-natal development lays the groundwork for using new approach methodologies (NAMs) to evaluate chemical toxicity, drug efficacy, and safety assessment for embryo-fetal development. NAM is a term recently adopted in reference to any technology, methodology, approach, or combination thereof that can be used to provide information on chemical hazard and risk assessment to avoid the use of intact animals (U.S. Environmental Protection Agency [EPA], Strategic plan to promote the development and implementation of alternative test methods within the tsca program, 2018, https://www.epa.gov/sites/production/files/2018-06/documents/epa_alt_strat_plan_6-20-18_clean_final.pdf). There are challenges to implementing NAMs to evaluate chemicals for developmental toxicity compared with adult toxicity. This forum article reviews the 2018 workshop activities, highlighting challenges and opportunities for applying NAMs for adverse pregnancy outcomes (eg, preterm labor, malformations, low birth weight) as well as disorders manifesting postnatally (eg, neurodevelopmental impairment, breast cancer, cardiovascular disease, fertility). DART is an important concern for different regulatory statutes and test guidelines. Leveraging advancements in such approaches and the accompanying efficiencies to detecting potential hazards to human development are the unifying concepts toward implementing NAMs in DART testing. Although use of NAMs for higher level regulatory decision making is still on the horizon, the conference highlighted novel testing platforms and computational models that cover multiple levels of biological organization, with the unique temporal dynamics of embryonic development, and novel approaches for estimating toxicokinetic parameters essential in supporting in vitro to in vivo extrapolation.


Asunto(s)
Pruebas de Toxicidad , Toxicología , Animales , Niño , Simulación por Computador , Femenino , Ensayos Analíticos de Alto Rendimiento , Humanos , Embarazo , Medición de Riesgo , Estados Unidos , United States Environmental Protection Agency
18.
Campbell Syst Rev ; 17(2): e1165, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37131929

RESUMEN

Background: Globally, almost 1.6 billion individuals lack adequate housing. Many accommodation-based approaches have evolved across the globe to incorporate additional support and services beyond delivery of housing. Objectives: This review examines the effectiveness of accommodation-based approaches on outcomes including housing stability, health, employment, crime, wellbeing, and cost for individuals experiencing or at risk of experiencing homelessness. Search Methods: The systematic review is based on evidence already identified in two existing EGMs commissioned by the Centre for Homelessness Impact (CHI) and built by White et al. The maps were constructed using a comprehensive three stage search and mapping process. Stage one mapped included studies in an existing systematic review on homelessness, stage two was an extensive search of 17 academic databases, three EGM databases, and eight systematic review databases. Finally stage three included web searches for grey literature, scanning reference lists of included studies and consultation with experts to identify additional literature. We identified 223 unique studies across 551 articles from the effectiveness map on 12th April 2019. Selection Criteria: We include research on all individuals currently experiencing, or at risk of experiencing homelessness irrespective of age or gender, in high-income countries. The Network Meta-Analysis (NMA) contains all study designs where a comparison group was used. This includes randomised controlled trials (RCTs), quasi-experimental designs, matched comparisons and other study designs that attempt to isolate the impact of the intervention on homelessness. The NMA primarily addresses how interventions can reduce homelessness and increase housing stability for those individuals experiencing, or at risk of experiencing, homelessness. Additional outcomes are examined and narratively described. These include: access to mainstream healthcare; crime and justice; employment and income; capabilities and wellbeing; and cost of intervention. These outcomes reflect the domains used in the EGM, with the addition of cost. Data Collection and Analysis: Due to the diverse nature of the literature on accommodation-based approaches, the way in which the approaches are implemented in practice, and the disordered descriptions of the categories, the review team created a novel typology to allow meaningful categorisations for functional and useful comparison between the various intervention types. Once these eligible categories were identified, we undertook dual data extraction, where two authors completed data extraction and risk of bias (ROB) assessments independently for each study. NMA was conducted across outcomes related to housing stability and health.Qualitative data from process evaluations is included using a "Best Fit" Framework synthesis. The purpose of this synthesis is to complement the quantitative evidence and provide a better understanding of what factors influenced programme effectiveness. All included Qualitative data followed the initial framework provided by the five main analytical categories of factors of influence (reflected in the EGM), namely: contextual factors, policy makers/funders, programme administrators/managers/implementing agencies, staff/case workers and recipients of the programme. Main Results: There was a total of 13,128 people included in the review, across 51 reports of 28 studies. Most of the included studies were carried out in the United States of America (25/28), with other locations including Canada and the UK. Sixteen studies were RCTs (57%) and 12 were nonrandomised (quasi-experimental) designs (43%). Assessment of methodological quality and potential for bias was conducted using the second version of the Cochrane Risk of Bias tool for Randomised controlled trials. Nonrandomised studies were coded using the ROBINS- I tool. Out of the 28 studies, three had sufficiently low ROB (11%), 11 (39%) had moderate ROB, and five (18%) presented serious problems with ROB, and nine (32%) demonstrated high, critical problems with their methodology. A NMA on housing stability outcomes demonstrates that interventions offering the highest levels of support alongside unconditional accommodation (High/Unconditional) were more effective in improving housing stability compared to basic support alongside unconditional housing (Basic/Unconditional) (ES=1.10, 95% confidence interval [CI] [0.39, 1.82]), and in comparison to a no-intervention control group (ES=0.62, 95% CI [0.19, 1.06]). A second NMA on health outcomes demonstrates that interventions categorised as offering Moderate/Conditional (ES= 0.36, 95% CI [0.03, 0.69]) and High/Unconditional (ES = 0.22, 95% CI [0.01, 0.43]) support were effective in improving health outcomes compared to no intervention. These effects were smaller than those observed for housing stability. The quality of the evidence was relatively low but varied across the 28 included studies. Depending on the context, finding accommodation for those who need it can be hindered by supply and affordability in the market. The social welfare approach in each jurisdiction can impact heavily on support available and can influence some of the prejudice and stigma surrounding homelessness. The evaluations emphasised the need for collaboration and a shared commitment between policymakers, funders and practitioners which creates community and buy in across sectors and agencies. However, co-ordinating this is difficult and requires sustainability to work. For those implementing programmes, it was important to invest time in developing a culture together to build trust and solid relationships. Additionally, identifying sufficient resources and appropriate referral routes allows for better implementation planning. Involving staff and case workers in creating processes helps drive enthusiasm and energy for the service. Time should be allocated for staff to develop key skills and communicate engage effectively with service users. Finally, staff need time to develop trust and relationships with service users; this goes hand in hand with providing information that is up to date and useful as well making themselves accessible in terms of location and time. Authors' Conclusions: The network meta-analysis suggests that all types of accommodation which provided support are more effective than no intervention or Basic/Unconditional accommodation in terms of housing stability and health. The qualitative evidence synthesis raised a primary issue in relation to context: which was the lack of stable, affordable accommodation and the variability in the rental market, such that actually sourcing accommodation to provide for individuals who are homeless is extremely challenging. Collaboration between stakeholders and practitioners can be fruitful but difficult to coordinate across different agencies and organisations.

19.
Chem Res Toxicol ; 34(2): 189-216, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33140634

RESUMEN

Since 2009, the Tox21 project has screened ∼8500 chemicals in more than 70 high-throughput assays, generating upward of 100 million data points, with all data publicly available through partner websites at the United States Environmental Protection Agency (EPA), National Center for Advancing Translational Sciences (NCATS), and National Toxicology Program (NTP). Underpinning this public effort is the largest compound library ever constructed specifically for improving understanding of the chemical basis of toxicity across research and regulatory domains. Each Tox21 federal partner brought specialized resources and capabilities to the partnership, including three approximately equal-sized compound libraries. All Tox21 data generated to date have resulted from a confluence of ideas, technologies, and expertise used to design, screen, and analyze the Tox21 10K library. The different programmatic objectives of the partners led to three distinct, overlapping compound libraries that, when combined, not only covered a diversity of chemical structures, use-categories, and properties but also incorporated many types of compound replicates. The history of development of the Tox21 "10K" chemical library and data workflows implemented to ensure quality chemical annotations and allow for various reproducibility assessments are described. Cheminformatics profiling demonstrates how the three partner libraries complement one another to expand the reach of each individual library, as reflected in coverage of regulatory lists, predicted toxicity end points, and physicochemical properties. ToxPrint chemotypes (CTs) and enrichment approaches further demonstrate how the combined partner libraries amplify structure-activity patterns that would otherwise not be detected. Finally, CT enrichments are used to probe global patterns of activity in combined ToxCast and Tox21 activity data sets relative to test-set size and chemical versus biological end point diversity, illustrating the power of CT approaches to discern patterns in chemical-activity data sets. These results support a central premise of the Tox21 program: A collaborative merging of programmatically distinct compound libraries would yield greater rewards than could be achieved separately.


Asunto(s)
Bibliotecas de Moléculas Pequeñas/toxicidad , Pruebas de Toxicidad , Ensayos Analíticos de Alto Rendimiento , Humanos , Estados Unidos , United States Environmental Protection Agency
20.
ALTEX ; 37(4): 579-606, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32369604

RESUMEN

Read-across (RAx) translates available information from well-characterized chemicals to a substance for which there is a toxicological data gap. The OECD is working on case studies to probe general applicability of RAx, and several regulations (e.g., EU-REACH) already allow this procedure to be used to waive new in vivo tests. The decision to prepare a review on the state of the art of RAx as a tool for risk assessment for regulatory purposes was taken during a workshop with international experts in Ranco, Italy in July 2018. Three major issues were identified that need optimization to allow a higher regulatory acceptance rate of the RAx procedure: (i) the definition of similarity of source and target, (ii) the translation of biological/toxicological activity of source to target in the RAx procedure, and (iii) how to deal with issues of ADME that may differ between source and target. The use of new approach methodologies (NAM) was discussed as one of the most important innovations to improve the acceptability of RAx. At present, NAM data may be used to confirm chemical and toxicological similarity. In the future, the use of NAM may be broadened to fully characterize the hazard and toxicokinetic properties of RAx compounds. Concerning available guidance, documents on Good Read-Across Practice (GRAP) and on best practices to perform and evaluate the RAx process were identified. Here, in particular, the RAx guidance, being worked out by the European Commission's H2020 project EU-ToxRisk together with many external partners with regulatory experience, is given.


Asunto(s)
Simulación por Computador , Sustancias Peligrosas/toxicidad , Reproducibilidad de los Resultados , Medición de Riesgo , Toxicología/legislación & jurisprudencia , Alternativas a las Pruebas en Animales , Animales , Humanos , Internacionalidad , Toxicología/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...